Assignment 5 for MATH4220

April 10, 2018

In Chapter 5, we will cover section 5.1 , 5.2 , 5.3 , 5.4 , 5.6 . No need to hand in. Exercise 5.1: 2, 3, 4, 5, 8, 9. Exercise 5.2: 1(a), 1(b), 1(c), 1(d), 1(f), 2, 4, 5, 7, 9, 10. Extra: Find out the solution for the following problem:

$$
u_{tt} - 4u_{xx} = 0, \ u(0,t) = u(1,t) = 0
$$

$$
u(x,0) = \sin^2(\pi x), u_t(x,0) = x(1-x)
$$

Exercise 5.3: 3, 5(a), 6, 8, 9, 10, 12, 13. Exercise 5.4: 1, 2, 3, 4, 5, 6, 7, 8. Exercise 5.6: 1, 2, 5, 8, 11.

Exercise 5.1

- 2. Let $\phi(x) \equiv x^2$ for $0 \le x \le 1 = l$.
	- (a) Calculate its Fourier sine series.
	- (b) Calculate its Fourier cosine series.
- 4. Find the Fourier cosine series of the function $|\sin x|$ in the interval $(-\pi, \pi)$. Use it to find the sums

$$
\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}
$$
 and
$$
\sum_{n=1}^{\infty} \frac{(-1)^n}{4n^2 - 1}.
$$

- 5. Given the Fourier sine series of $\phi(x) \equiv x$ on $(0, l)$. Assume that the series can be integrated term by term, a fact that will be shown later.
	- (a) Find the Fourier cosine series of the function $x^2/2$. Find the constant of integration that will be the first term in the cosine series.
	- (b) Then by setting $x = 0$ in your result, find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}
$$

.

8. A rod has length $l = 1$ and constant $k = 1$. Its temperature satisfies the heat equation. Its left end is held at temperature 0, its right end at temperature 1. Initially (at $t = 0$) the temperature is given by

$$
\phi(x) = \begin{cases} \frac{5x}{2} & 0 < x < \frac{2}{3} \\ 3 - 2x & \frac{2}{3} < x < 1. \end{cases}
$$

Find the solution, including the coefficients. (*Hint:* First find the equilibrium solution $U(x)$, and then solve the heat equation with initial condition $u(x, 0) = \phi(x) - U(x)$.

9. Solve $u_{tt} = c^2 u_{xx}$ for $0 < x < \pi$, with the boundary conditions $u_x(0,t) = u_x(\pi, t) = 0$ and the initial conditions $u(x, 0) = 0$, $u_t(x, 0) = \cos^2 x$. (*Hint*: See (4.2.7).)

Exercise 5.2

- 2. Show that $\cos x + \cos \alpha x$ is periodic if α is a rational number. What is its period?
- 5. Show that the Fourier sine series on $(0, l)$ can be derived from the full Fourier series on $(-l, l)$ as follows. Let $\phi(x)$ be any (continuous) function on $(0, l)$. Let $\tilde{\phi}(x)$ be its odd extension. Write the full series for $\phi(x)$ on $(-l, l)$. [Assume that its sum is $\phi(x)$.] By Exercise 4, this series has only sine terms. Simply restrict your attention to $0 < x < l$ to get the sine series for $\phi(x)$.
- 8. (a) Prove that differentiation switches even functions to odd ones, and odd functions to even ones.
	- (b) Prove the same for integration provided that we ignore the constant of integration.
- 10. (a) Let $\phi(x)$ be a continuous function on $(0, l)$. Under what conditions is its *odd* extension also a continuous function?
	- (b) Let $\phi(x)$ be a differentiable function on $(0, l)$. Under what conditions is its *odd* extension also a differentiable function?
	- (c) Same as part (a) for the even extension.
	- (d) Same as part (b) for the even extension.

Exercise 5.3

- 3. Consider $u_{tt} = c^2 u_{xx}$ for $0 < x < l$, with the boundary conditions $u(0, t) = 0$, $u_x(l, t) = 0$ and the initial conditions $u(x, 0) = x$, $u_t(x, 0) = 0$. Find the solution explicitly in series form.
- 5(a). Show that the boundary conditions $u(0,t) = 0, u_x(l,t) = 0$ lead to the eigenfunctions $(\sin(\pi x/2l))$, $\sin(3\pi x/2l), \sin(5\pi x/2l), \cdots$).
	- 6. Find the complex eigenvalues of the first-derivative operator d/dx subject to the single boundary condition $X(0) = X(1)$. Are the eigenfunctions orthogonal on the interval $(0, 1)$?
	- 8. Show directly that $(-X_1'X_2 + X_1X_2')|_a^b = 0$ if both X_1 and X_2 satisfy the same Robin boundary condition at $x = a$ and the same Robin boundary condition at $x = b$.
	- 9. Show that the boundary conditions

$$
X(b) = \alpha X(a) + \beta X'(a)
$$
 and $X'(b) = \gamma X(a) + \delta X'(a)$

on an interval $a \leq x \leq b$ are symmetric if and only if $\alpha\delta - \beta\gamma = 1$.

12. Prove Green's first identity: For every pair of functions $f(x)$, $g(x)$ on (a, b) ,

$$
\int_{a}^{b} f''(x)g(x)dx = -\int_{a}^{b} f'(x)g'(x)dx + f'g\Big|_{a}^{b}.
$$

13. Use Greens first identity to prove Theorem 3. (Hint: Substitute $f(x) = X(x) = g(x)$, a real eigenfunction.)

Exercise 5.4

- 1. $\sum_{n=0}^{\infty} (-1)^n x^{2n}$ is a geometric series.
	- (a) Does it converge pointwise in the interval $1 < x < 1$?
	- (b) Does it converge uniformly in the interval $1 < x < 1$?
	- (c) Does it converge in the L^2 sense in the interval $1 < x < 1$? (*Hint:* You can compute its partial sums explicitly.)
- 2. Consider any series of functions on any finite interval. Show that if it converges uniformly, then it also converges in the L^2 sense and in the pointwise sense.
- 3. Let γ_n be a sequence of constants tending to ∞ . Let $f_n(x)$ be the sequence of functions defined as follows: $f_n(\frac{1}{2})$ $(\frac{1}{2}) = 0, f_n(x) = \gamma_n$ in the interval $[\frac{1}{2} - \frac{1}{n}]$ $\frac{1}{n},\frac{1}{2}$ $(\frac{1}{2}), \text{ let } f_n(x) = -\gamma_n \text{ in the interval } (\frac{1}{2}, \frac{1}{2} + \frac{1}{n})$ $\frac{1}{n}$ and let $f_n(x) = 0$ elsewhere. Show that:
	- (a) $f_n(x) \to 0$ pointwise.
	- (b) The convergence is not uniform.
	- (c) $f_n(x) \to 0$ in the L^2 sense if $\gamma_n = n^{1/3}$.
	- (d) $f_n(x)$ does not converge in the L^2 sence if $\gamma_n = n$.

4. Let

$$
g_n(x) = \begin{cases} 1 \text{ in the interval } \left[\frac{1}{4} - \frac{1}{n^2}, \frac{1}{4} + \frac{1}{n^2}\right) & \text{for odd } n \\ 1 \text{ in the interval } \left[\frac{3}{4} - \frac{1}{n^2}, \frac{3}{4} + \frac{1}{n^2}\right) & \text{for even } n \\ 0 & \text{for all other } x. \end{cases}
$$

Show that $g_n(x) \to 0$ in the L^2 sense but that $g_n(x)$ does not tend to zero in the pointwise sense.

- 5. Let $\phi(x) = 0$ for $0 < x < 1$ and $\phi(x) = 1$ for $1 < x < 3$.
	- (a) Find the first four nonzero terms of its Fourier cosine series explicitly.
	- (b) For each $x(0 \le x \le 3)$, what is the sum of this series?
	- (c) Does it converge to $\phi(x)$ in the L^2 sense? Why?
	- (d) Put $x = 0$ to find the sum

$$
1 + \frac{1}{2} - \frac{1}{4} - \frac{1}{5} + \frac{1}{7} + \frac{1}{8} - \frac{1}{10} - \frac{1}{11} + \cdots
$$

6. Find the sine series of the function cos x on the interval $(0, \pi)$. For each x satisfying $-\pi \leq x \leq \pi$, what is the sum of the series?

7. Let

$$
\phi(x) = \begin{cases} -1 - x & -1 < x < 0 \\ 1 - x & 0 < x < 1. \end{cases}
$$

- (a) Find the full Fourier series of $\phi(x)$ in the interval $(-1, 1)$.
- (b) Find the first three nonzero terms explicitly.
- (c) Does it converge in the mean square sense?
- (d) Does it converge pointwise?
- (e) Does it converge uniformly to $\phi(x)$ in the interval $(-1, 1)$?

Exercise 5.6

- 1. (a) Solve as a series the equation $u_t = u_{xx}$ in $(0,1)$ with $u_x(0,t) = 0$, $u(1,t) = 1$, and $u(x,0) = x^2$. Compute the first two coefficients explicitly.
	- (b) What is the equilibrium state (the term that does not tend to zero)?
- 2. For problem (1), complete the calculation of the series in case $j(t) = 0$ and $h(t) = e^t$.
- 5. Solve $u_{tt} = c^2 u_{xx} + e^t \sin 5x$ for $0 < x < \pi$, with $u(0, t) = u(\pi, t) = 0$ and the initial conditions $u(x, 0) = 0$, $u_t(x, 0) = \sin 3x.$
- 8. Solve $u_t = k u_{xx}$ in $(0, l)$, with $u(0, t) = 0$, $u(l, t) = At$, $u(x, 0) = 0$, where A is a constant.